National Repository of Grey Literature 5 records found  Search took 0.02 seconds. 
Optical responses of biomolecules on regular metal plasmonic nanostructures
Šubr, Martin ; Procházka, Marek (advisor) ; Michl, Martin (referee) ; Valenta, Jan (referee)
Title: Optical Responses of Biomolecules on Regular Metal Plasmonic Nanostructures Author: Martin Šubr Department: Institute of Physics of Charles University Supervisor of the doctoral thesis: prof. RNDr. Marek Procházka, Dr., Institute of Physics of Charles University Abstract: Adsorption of molecules on metal plasmonic nanostructures leads to significant enhancement of many optical processes, such as Raman scattering (surface-enhanced Raman scattering - SERS) or fluorescence (surface-enhanced fluorescence - SEF). Two groups of substrates were tested within this thesis: (i) Silver nanorods prepared by oblique angle vapor deposition, and (ii) silver and gold nanoislands growing on magnetron-sputtered polytetrafluoroethylene film. Step-by- step optimization process was performed on the nanoislands in order to obtain optimum SERS sensitivity and reproducibility. Detailed SERS intensity profiles were obtained using gradient nanostructures with the localized surface plasmon resonance (LSPR) condition varying across the sample and three different excitation wavelengths. It was also found that spectral position and height of the LSPR band can be controlled simultaneously using mixed gold/silver nanoislands. Detailed investigation of polarization- and angular- dependences of anisotropic silver nanorods was...
Monitoring of surface reactions on plasmon nanoparticles by surface-enhanced Raman spectroscopy
Kožíšek, Jan ; Šloufová, Ivana (advisor) ; Procházka, Marek (referee)
The presented diploma thesis is focused on finding conditions suitable for the study of surface reactions, especially Suzuki-Miyaura cross-coupling reaction (SMCR), by the surface- enhanced Raman scattering (SERS) method. The first part of the work deals with the optimization of the conditions of individual reactions using the classical synthetic Schlenk technique. Traditional, published, conditions for SMCR were gradually modified during the work so that the reactions could be performed in aqueous media and at room temperature, i.e., under conditions suitable for SERS spectroscopy. The following catalysts were tested: (i) PEPPSI - the traditional SMCR catalyst; (ii) palladium ions; (iii) Pd colloids; (iv) bimetallic colloids of Pd and plasmonic metal (Ag, Au) in the form of core-shell and alloy; (v) Ag and Au colloids with additions of palladium salt or N- heterocyclic carbenes (NHC-catalysts). Two groups of substrates were used: substrates with functional groups with high affinity for the surfaces of metal nanoparticles (NPs) and substrates without these anchoring functional groups. Substrates without the anchoring functional groups can be expected to enter the SMCR reaction from solution. In the second part of this diploma thesis selected reaction mixtures for SMCR were performed in septum...
Optical responses of biomolecules on regular metal plasmonic nanostructures
Šubr, Martin ; Procházka, Marek (advisor)
Title: Optical Responses of Biomolecules on Regular Metal Plasmonic Nanostructures Author: Martin Šubr Department: Institute of Physics of Charles University Supervisor of the doctoral thesis: prof. RNDr. Marek Procházka, Dr., Institute of Physics of Charles University Abstract: Adsorption of molecules on metal plasmonic nanostructures leads to significant enhancement of many optical processes, such as Raman scattering (surface-enhanced Raman scattering - SERS) or fluorescence (surface-enhanced fluorescence - SEF). Two groups of substrates were tested within this thesis: (i) Silver nanorods prepared by oblique angle vapor deposition, and (ii) silver and gold nanoislands growing on magnetron-sputtered polytetrafluoroethylene film. Step-by- step optimization process was performed on the nanoislands in order to obtain optimum SERS sensitivity and reproducibility. Detailed SERS intensity profiles were obtained using gradient nanostructures with the localized surface plasmon resonance (LSPR) condition varying across the sample and three different excitation wavelengths. It was also found that spectral position and height of the LSPR band can be controlled simultaneously using mixed gold/silver nanoislands. Detailed investigation of polarization- and angular- dependences of anisotropic silver nanorods was...
Optical responses of biomolecules on regular metal plasmonic nanostructures
Šubr, Martin ; Procházka, Marek (advisor)
Title: Optical Responses of Biomolecules on Regular Metal Plasmonic Nanostructures Author: Martin Šubr Department: Institute of Physics of Charles University Supervisor of the doctoral thesis: prof. RNDr. Marek Procházka, Dr., Institute of Physics of Charles University Abstract: Adsorption of molecules on metal plasmonic nanostructures leads to significant enhancement of many optical processes, such as Raman scattering (surface-enhanced Raman scattering - SERS) or fluorescence (surface-enhanced fluorescence - SEF). Two groups of substrates were tested within this thesis: (i) Silver nanorods prepared by oblique angle vapor deposition, and (ii) silver and gold nanoislands growing on magnetron-sputtered polytetrafluoroethylene film. Step-by- step optimization process was performed on the nanoislands in order to obtain optimum SERS sensitivity and reproducibility. Detailed SERS intensity profiles were obtained using gradient nanostructures with the localized surface plasmon resonance (LSPR) condition varying across the sample and three different excitation wavelengths. It was also found that spectral position and height of the LSPR band can be controlled simultaneously using mixed gold/silver nanoislands. Detailed investigation of polarization- and angular- dependences of anisotropic silver nanorods was...
Optical responses of biomolecules on regular metal plasmonic nanostructures
Šubr, Martin ; Procházka, Marek (advisor) ; Michl, Martin (referee) ; Valenta, Jan (referee)
Title: Optical Responses of Biomolecules on Regular Metal Plasmonic Nanostructures Author: Martin Šubr Department: Institute of Physics of Charles University Supervisor of the doctoral thesis: prof. RNDr. Marek Procházka, Dr., Institute of Physics of Charles University Abstract: Adsorption of molecules on metal plasmonic nanostructures leads to significant enhancement of many optical processes, such as Raman scattering (surface-enhanced Raman scattering - SERS) or fluorescence (surface-enhanced fluorescence - SEF). Two groups of substrates were tested within this thesis: (i) Silver nanorods prepared by oblique angle vapor deposition, and (ii) silver and gold nanoislands growing on magnetron-sputtered polytetrafluoroethylene film. Step-by- step optimization process was performed on the nanoislands in order to obtain optimum SERS sensitivity and reproducibility. Detailed SERS intensity profiles were obtained using gradient nanostructures with the localized surface plasmon resonance (LSPR) condition varying across the sample and three different excitation wavelengths. It was also found that spectral position and height of the LSPR band can be controlled simultaneously using mixed gold/silver nanoislands. Detailed investigation of polarization- and angular- dependences of anisotropic silver nanorods was...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.